1,060 research outputs found

    Interplay between Freezing and Superconductivity in the Optimally Doped LaEu0.20Sr0.15CuO4 under Hydrostatic Pressure

    Full text link
    We study the electronic properties of a LaEu0.20Sr0.15CuO4 single crystal under hydrostatic pressure up to 2.9 GPa. Both the freezing of the Cu 3d moments and the structural transition from the orthorhombic (LTO) to the tetragonal (LTT) phase are observed via the relaxation of the nuclear magnetization of La nuclei. Resistivity and magnetic susceptibility measurements have been carried out under pressure on the same sample. The combination of all data reveals the connection between glassy dynamics, charge localization and the disappearance of superconductivity in the LTT phase.Comment: 5 pages, 4 figures, submitte

    Planetary Science Goals for the Spitzer Warm Era

    Get PDF
    The overarching goal of planetary astronomy is to deduce how the present collection of objects found in our Solar System were formed from the original material present in the proto-solar nebula. As over two hundred exo-planetary systems are now known, and multitudes more are expected, the Solar System represents the closest and best system which we can study, and the only one in which we can clearly resolve individual bodies other than planets. In this White Paper we demonstrate how to use Spitzer Space Telescope InfraRed Array Camera Channels 1 and 2 (3.6 and 4.5 µm) imaging photometry with large dedicated surveys to advance our knowledge of Solar System formation and evolution. There are a number of vital, key projects to be pursued using dedicated large programs that have not been pursued during the five years of Spitzer cold operations. We present a number of the largest and most important projects here; more will certainly be proposed once the warm era has begun, including important observations of newly discovered objects

    Logarithmic growth dynamics in software networks

    Full text link
    In a recent paper, Krapivsky and Redner (Phys. Rev. E, 71 (2005) 036118) proposed a new growing network model with new nodes being attached to a randomly selected node, as well to all ancestors of the target node. The model leads to a sparse graph with an average degree growing logarithmically with the system size. Here we present compeling evidence for software networks being the result of a similar class of growing dynamics. The predicted pattern of network growth, as well as the stationary in- and out-degree distributions are consistent with the model. Our results confirm the view of large-scale software topology being generated through duplication-rewiring mechanisms. Implications of these findings are outlined.Comment: 7 pages, 3 figures, published in Europhysics Letters (2005
    corecore